TREATMENT WITH HMG-CoA REDUCTASE INHIBITORS (STATINS) IS ASSOCIATED WITH PRESERVATION OF HEPATIC FUNCTION IN ADVANCED CHRONIC LIVER DISEASE (CLD): RESULTS FROM THE SHUNT-V STUDY

Robert S. Rahimi, MD, for the SHUNT-V Subjects, Investigators, and Coordinators
Disclosures

Robert Rahimi, MD
I have no financial relationship with a commercial interest

Steve M. Helmke, PhD: employee (CSO) HepQuant LLC; equity member HepQuant LLC; Intellectual property in HepQuant technology

Gregory T. Everson, MD: employee (CEO) HepQuant LLC; equity member HepQuant LLC; Intellectual property in HepQuant technology

The SHUNT-V Study was sponsored by HepQuant LLC
Aim

The primary aim of this analysis was to identify factors in patients with advanced chronic liver disease that are associated with severity of:

• Impairment of liver function
• Portal-systemic shunting

Specifically, we used the dual cholate test (HepQuant) to quantify liver function (Disease Severity Index, DSI) and shunting (SHUNT%) and define the impact of:

• Disease Etiology – NASH versus Other
• Coexistent disease – Diabetes versus No Diabetes
• Drug treatment – Diabetic and Lipid-lowering drugs
Background

• Etiology, coexistent disease, and concomitant drug therapy can influence the progression of chronic liver disease (CLD).

• With disease progression portal hypertension and portal-systemic shunting increase and liver function declines – leading to clinical complications, such as varices.

• The noninvasive DUAL CHOLATE test quantifies portal-systemic shunting (SHUNT%) and generates a Disease Severity Index (DSI) of global liver function.

• In the SHUNT-V Study, shunting (SHUNT%) and liver function (DSI) were characterized in subjects with suspected, compensated, or clinically-stable cirrhosis.

• SHUNT-V and other studies found that SHUNT% and DSI predicted likelihood for portal hypertension*, esophageal varices**, and risk for clinical outcome***.

The SHUNT-V Study Enrollment Criteria

• 27 US clinical centers from Feb 2019 through Dec 2020
• Adults undergoing screening or surveillance EGD for varices
• Included suspected or definite cirrhosis as determined by:
 • Prior liver biopsy
 • Radiologic (including elastography) or clinical criteria
 • Chronically abnormal liver tests with low platelet count
• Exclusions included:
 • Child-Pugh C cirrhosis
 • Refractory ascites or encephalopathy
 • Prior variceal hemorrhage, known large varices, or treatment of varices

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.
Dual Cholate Test Administration

Simultaneous PO and IV Administration of Cholate Compounds

- **Mouth**: 40 mg d4-Cholate mixed with juice
- **Blood stream**
- **Stomach**
- **Intestines**

Peripheral Blood Sampling at 5, 20, 45, 60, 90 min.

- Indwelling intravenous catheter for timed blood draws
- Serum samples shipped to HQ lab for LC-MS/MS

Dissolved Active Pharmaceutical Ingredient (API)

20 mg 13C-Cholate mixed with human albumin

Entry of intravenously administered API into blood stream

Entry of orally administered API into blood stream

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.
Example of Dual Cholate Clearances in a Subject with Liver Disease

Blood Samples (3 mL) at 0, 5, 20, 45, 60, 90 min

DSI 28.7
(ULNI <12)

SHUNT 52.1%
(ULNI <30%)

[13C-cholate] after IV Injection

[d4-cholate] after PO Intake
Results: NASH versus NON-NASH Subjects
Demographics by NASH Diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Wt (kg)</th>
<th>Ht (cm)</th>
<th>BMI (kg m⁻²)</th>
<th>Obese (BMI >30)</th>
<th>Diabetes Mellitus</th>
<th>Age (yr)</th>
<th>Men</th>
<th>Hispanic</th>
<th>White</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASH Mean (or %)</td>
<td>98.5</td>
<td>167.1</td>
<td>35.1</td>
<td>78.0%</td>
<td>66.7%</td>
<td>62.9</td>
<td>41.5%</td>
<td>10.6%</td>
<td>99.2%</td>
<td>0.8%</td>
</tr>
<tr>
<td>SD</td>
<td>20.8</td>
<td>9.6</td>
<td>6.3</td>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>147</td>
<td>147</td>
<td>147</td>
<td>79</td>
<td>33</td>
<td>147</td>
<td>83</td>
<td>25</td>
<td>131</td>
<td>13</td>
</tr>
<tr>
<td>Non-NASH Mean (or %)</td>
<td>93.1</td>
<td>170.2</td>
<td>32.0</td>
<td>53.7%</td>
<td>22.4%</td>
<td>60.3</td>
<td>56.5%</td>
<td>17.0%</td>
<td>89.1%</td>
<td>8.8%</td>
</tr>
<tr>
<td>SD</td>
<td>25.2</td>
<td>10.6</td>
<td>7.6</td>
<td></td>
<td></td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>0.06</td>
<td>0.0130</td>
<td>0.0003</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.0466</td>
<td>0.0150</td>
<td>0.16</td>
<td>0.0006</td>
<td>0.0040</td>
</tr>
</tbody>
</table>
Clinical Scores and Lab Tests by NASH Diagnosis

<table>
<thead>
<tr>
<th></th>
<th>CTP Score</th>
<th>MELD Score</th>
<th>MELD Na Score</th>
<th>Creatinine (mg/dL)</th>
<th>Bilirubin (mg/dL)</th>
<th>INR</th>
<th>Sodium (meq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>118</td>
<td>116</td>
<td>113</td>
<td>117</td>
<td>118</td>
<td>116</td>
<td>114</td>
</tr>
<tr>
<td>SD</td>
<td>5.33</td>
<td>8.51</td>
<td>8.55</td>
<td>0.91</td>
<td>0.82</td>
<td>1.15</td>
<td>140</td>
</tr>
<tr>
<td>Non-NASH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>137</td>
<td>134</td>
<td>129</td>
<td>134</td>
<td>135</td>
<td>135</td>
<td>130</td>
</tr>
<tr>
<td>SD</td>
<td>5.49</td>
<td>8.60</td>
<td>8.77</td>
<td>0.87</td>
<td>1.02</td>
<td>1.22</td>
<td>140</td>
</tr>
<tr>
<td>t-test p</td>
<td>0.14</td>
<td>0.81</td>
<td>0.67</td>
<td>0.27</td>
<td>0.06</td>
<td>0.43</td>
<td>0.59</td>
</tr>
</tbody>
</table>

NASH and NON-NASH subjects had similar clinical scores and standard laboratory tests.
Results of the Dual Cholate Test by NASH Diagnosis

<table>
<thead>
<tr>
<th>NASH</th>
<th>Systemic HFR</th>
<th>Portal HFR</th>
<th>SHUNT</th>
<th>DSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mL min⁻¹ kg⁻¹</td>
<td>mL min⁻¹ kg⁻¹</td>
<td>%</td>
<td>Score</td>
</tr>
<tr>
<td>N</td>
<td>3.29</td>
<td>10.90</td>
<td>123.00</td>
<td>123</td>
</tr>
<tr>
<td>SD</td>
<td>0.98</td>
<td>6.49</td>
<td>39.0%</td>
<td>23.4</td>
</tr>
<tr>
<td>Mean</td>
<td>147</td>
<td>147</td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>N</td>
<td>3.16</td>
<td>9.38</td>
<td>44.1%</td>
<td>25.5</td>
</tr>
<tr>
<td>SD</td>
<td>1.10</td>
<td>6.76</td>
<td>18.8%</td>
<td>8.5</td>
</tr>
<tr>
<td>t-test</td>
<td>p</td>
<td></td>
<td>0.0256</td>
<td>0.0375</td>
</tr>
</tbody>
</table>

UNEXPECTED FINDING: Thus, it was surprising that NASH subjects had better liver function (lower DSI) and less portal-systemic shunting (lower SHUNT%).
Results: Diabetic versus NON-Diabetic Subjects
Demographics by Diabetes Diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Wt (kg)</th>
<th>Ht (cm)</th>
<th>BMI (kg m(^{-2}))</th>
<th>Obese (BMI >30)</th>
<th>NASH</th>
<th>Age (yr)</th>
<th>Men</th>
<th>Hispanic</th>
<th>White</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic</td>
<td>N</td>
<td>Mean (or %)</td>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>98.3</td>
<td>20.6</td>
<td>115</td>
<td>82</td>
<td>115</td>
<td>54</td>
<td>17</td>
<td>109</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>168.3</td>
<td>9.1</td>
<td>115</td>
<td>82</td>
<td>63.9</td>
<td>47.0%</td>
<td>14.8%</td>
<td>94.8%</td>
<td>4.3%</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>155</td>
<td>155</td>
<td>93</td>
<td>41</td>
<td>155</td>
<td>80</td>
<td>21</td>
<td>144</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>169.2</td>
<td>11.1</td>
<td>155</td>
<td>93</td>
<td>59.7</td>
<td>51.6%</td>
<td>13.5%</td>
<td>92.9%</td>
<td>5.8%</td>
</tr>
<tr>
<td>Non-Diabetic</td>
<td>N</td>
<td>Mean (or %)</td>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>93.5</td>
<td>25.1</td>
<td>115</td>
<td>93</td>
<td>59.7</td>
<td>51.6%</td>
<td>13.5%</td>
<td>92.9%</td>
<td>5.8%</td>
</tr>
<tr>
<td></td>
<td>116</td>
<td>169.2</td>
<td>11.1</td>
<td>93</td>
<td>41</td>
<td>59.7</td>
<td>51.6%</td>
<td>13.5%</td>
<td>92.9%</td>
<td>5.8%</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>169.2</td>
<td>11.1</td>
<td>155</td>
<td>41</td>
<td>59.7</td>
<td>51.6%</td>
<td>13.5%</td>
<td>92.9%</td>
<td>5.8%</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>169.2</td>
<td>11.1</td>
<td>155</td>
<td>41</td>
<td>59.7</td>
<td>51.6%</td>
<td>13.5%</td>
<td>92.9%</td>
<td>5.8%</td>
</tr>
</tbody>
</table>

Diabetic subjects had higher BMI and were older; 71.3% had NASH.
Clinical Scores and Lab Tests by Diabetes Diagnosis

<table>
<thead>
<tr>
<th></th>
<th>CTP Score</th>
<th>MELD Score</th>
<th>MELD Na Score</th>
<th>Creatinine (mg/dL)</th>
<th>Bilirubin (mg/dL)</th>
<th>INR</th>
<th>Sodium (meq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic</td>
<td>N</td>
<td>113</td>
<td>111</td>
<td>107</td>
<td>111</td>
<td>112</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>5.27</td>
<td>8.25</td>
<td>8.60</td>
<td>0.91</td>
<td>0.79</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.65</td>
<td>3.04</td>
<td>3.97</td>
<td>0.27</td>
<td>0.68</td>
<td>0.35</td>
</tr>
<tr>
<td>Non-Diabetic</td>
<td>N</td>
<td>142</td>
<td>139</td>
<td>135</td>
<td>140</td>
<td>141</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>5.54</td>
<td>8.80</td>
<td>8.73</td>
<td>0.87</td>
<td>1.03</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.97</td>
<td>2.88</td>
<td>3.96</td>
<td>0.32</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>t-test</td>
<td>p</td>
<td>0.0121</td>
<td>0.15</td>
<td>0.80</td>
<td>0.30</td>
<td>0.0196</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Preserved function in diabetic subjects is suggested by the slightly lower CP score and mean bilirubin.
Results of the Dual Chololate Test by Diabetes Diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Systemic HFR</th>
<th>Portal HFR</th>
<th>SHUNT</th>
<th>DSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mL min⁻¹ kg⁻¹</td>
<td>mL min⁻¹ kg⁻¹</td>
<td>%</td>
<td>Score</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>Mean</td>
<td>3.38</td>
<td>11.74</td>
<td>37.5%</td>
<td>22.63</td>
</tr>
<tr>
<td>SD</td>
<td>0.99</td>
<td>7.44</td>
<td>18.1%</td>
<td>7.46</td>
</tr>
<tr>
<td>No-DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>155</td>
<td>155</td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td>Mean</td>
<td>3.10</td>
<td>8.83</td>
<td>44.9%</td>
<td>26.0</td>
</tr>
<tr>
<td>SD</td>
<td>1.08</td>
<td>5.75</td>
<td>18.5%</td>
<td>8.3</td>
</tr>
<tr>
<td>p</td>
<td>0.0325</td>
<td>0.0004</td>
<td>0.0013</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

UNEXPECTED FINDING: Since diabetes is a risk factor for progression of liver disease, it was surprising that liver function was better (lower DSI) and Portal-Systemic Shunting Less (lower SHUNT%) in DIABETIC Subjects.
Results: Drug Treatment
Effect of Diabetic and Lipid-lowering Drugs

Diabetic and Lipid-lowering drug use is associated with less portal-systemic shunting (lower SHUNT%) and better liver function (lower DSI). *p value for change from treatment with neither to both classes of drug.
In Multivariable Analysis the Use of STATINs or METFORMIN were Independently Associated with Lower SHUNT% and Lower DSI

<table>
<thead>
<tr>
<th></th>
<th>Impact on SHUNT%</th>
<th>Impact on DSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Decline in SHUNT%</td>
<td>p</td>
</tr>
<tr>
<td>Statin</td>
<td>-6.3%</td>
<td>0.0132</td>
</tr>
<tr>
<td>Metformin</td>
<td>-5.9%</td>
<td>0.0475</td>
</tr>
<tr>
<td>Diabetes Diagnosis</td>
<td>-1.4%</td>
<td>0.64</td>
</tr>
<tr>
<td>NASH Diagnosis</td>
<td>-1.3%</td>
<td>0.61</td>
</tr>
</tbody>
</table>

The combined effect of the use of STATINs plus METFORMIN was 20% less portal-systemic shunting (lower SHUNT%) and 20% better function (lower DSI).
Summary

• This study highlights the potential utility of the sensitive and reliable dual cholate test of liver function for detecting treatment effects.

• STATINS and Metformin were independently associated with preserved hepatic function and reduced portal-systemic shunting.

• Improved liver function and reduced portal-systemic shunting should reduce risk for clinical outcome.

➢ Follow-up of the SHUNT-V cohort is planned.
Key Takeaways

• STATIN and Metformin use may slow the progression of chronic liver disease.

• These results provide support for a clinical trial of STATIN and Metformin in the treatment of chronic liver disease.

• The dual cholate test may detect the effects of treatments on liver function and physiology, and potentially provide new endpoints for clinical trials.
SHUNT-V Investigators and Clinical Centers

<table>
<thead>
<tr>
<th>Institution</th>
<th>Investigator Name</th>
<th>Investigator Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accel Research Sites</td>
<td>John M Hill, MD</td>
<td>Chair, Integrated Site Network</td>
</tr>
<tr>
<td>Arizona Liver Health</td>
<td>Anita Kohli, MD</td>
<td>Director of Research and Managing Partner</td>
</tr>
<tr>
<td>Baylor Scott and White</td>
<td>Robert Rahimi, MD</td>
<td>Transplant Hepatologist and Gastroenterologist</td>
</tr>
<tr>
<td>Bon Secours Liver Institute of Richmond</td>
<td>Mitchell Shiffman, MD</td>
<td>Director, Liver Institute of Virginia, Bon Secours Virginia Health System</td>
</tr>
<tr>
<td>California Liver Research Institute</td>
<td>Edward Mena, MD</td>
<td>Medical Director & CEO</td>
</tr>
<tr>
<td>Clinical Trials of Texas, Inc.</td>
<td>Douglas Denham, DO</td>
<td>Medical Director</td>
</tr>
<tr>
<td>Digestive Disease Associates</td>
<td>Natarajan Ravendhran, MD</td>
<td>Medical Director, Clinical Research Department</td>
</tr>
<tr>
<td>Gastroenterology Associates of Pensacola, PA</td>
<td>Frederic Newman, MD</td>
<td>Gastroenterologist</td>
</tr>
<tr>
<td>Gastroenterology Consultants of Southwest Virginia</td>
<td>Vishal Bhat, MD</td>
<td>Director of Clinical Research</td>
</tr>
<tr>
<td>Gastroenterology Health Partners, PLLC</td>
<td>James Strobel, MD</td>
<td>Gastroenterologist</td>
</tr>
<tr>
<td>Inland Empire Liver Foundation</td>
<td>Zeid Kayali, MD</td>
<td>Medical Director</td>
</tr>
<tr>
<td>Intermountain Medical Center</td>
<td>Richard Gilroy, MD</td>
<td>Medical Director of Hepatology and Liver Transplantation</td>
</tr>
<tr>
<td>Lucas Research</td>
<td>Kathryn Lucas, MD</td>
<td>Endocrinologist & President</td>
</tr>
<tr>
<td>Mayo Clinic Florida</td>
<td>Andrew Keaveny, MD</td>
<td>Medical Director, Clinical and Transplant Hepatology</td>
</tr>
<tr>
<td>Mayo Clinic Rochester</td>
<td>Michael Leise, MD</td>
<td>Associate Professor of Medicine</td>
</tr>
<tr>
<td>McGuire VA</td>
<td>Michael Fuchs, MD</td>
<td>Professor of Medicine</td>
</tr>
<tr>
<td>Methodist Dallas Medical Center</td>
<td>Parvez Mantry, MD</td>
<td>Medical Director, Liver Institute Research</td>
</tr>
<tr>
<td>Nature Coast Clinical Research</td>
<td>Paul Hellstern, MD</td>
<td>Clinical Research Investigator Gastroenterology</td>
</tr>
<tr>
<td>Peak Gastroenterology Associates</td>
<td>Bhaktasharan Patel, MD</td>
<td>President & Founder</td>
</tr>
<tr>
<td>PMG Research</td>
<td>Brian Smith, MD</td>
<td>Clinical Investigator</td>
</tr>
<tr>
<td>Ralph H Johnson VAMC</td>
<td>Wing-Kin Syn, MBChB</td>
<td>Professor of Medicine & Associate Research Program Director</td>
</tr>
<tr>
<td>Southern California Research Center</td>
<td>Tarek Hassanein, MD</td>
<td>Director</td>
</tr>
<tr>
<td>St. Louis University</td>
<td>Kamran Qureshi, MD</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Tandem Clinical Research</td>
<td>Gary Reiss, MD</td>
<td>Clinical Investigator</td>
</tr>
<tr>
<td>University of Mississippi</td>
<td>Sarah Glover, DO</td>
<td>Division Chief for Digestive Disease</td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td>Rajender Reddy, MD</td>
<td>Director, Hepatology & Medical Director, Liver Transplantation</td>
</tr>
<tr>
<td>University of Washington</td>
<td>Ethan Weinberg, MD</td>
<td>Assistant Professor in Clinical Medicine</td>
</tr>
<tr>
<td></td>
<td>Kiran Bambha, MD</td>
<td>Associate Professor of Medicine</td>
</tr>
</tbody>
</table>

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.
Thank you!