Compartmental modeling enhances the reliability of the measurement of portal systemic shunting by the HepQuant SHUNT test <u>M.P. McRae¹, S.M. Helmke², and G.T. Everson²</u> ¹Custom Diagnostic Solutions LLC, Houston, TX, USA; ²HepQuant LLC, Denver, CO, USA

Background

- and systemic SHUNT portal HepQuant test measures clearances simultaneously, involving:
 - IV dose of carbon-13-labeled cholate (13C-CA)
 - Oral dose of deuterium-labeled cholate (d4-CA)
 - 5 peripheral venous blood draws over 90 minutes
- Previously, a noncompartmental analysis (the Minimal Model) characterized IV clearance by exponential fits and oral clearance by cubic spline fits [1]
- > Physiological-based compartmental models, described by distribution volumes and transfer rates between volumes, can estimate parameters not defined by noncompartmental analyses

Aims

- > Apply a Compartmental Model [2] to elucidate the underlying mechanisms of hepatic uptake of cholate and anatomic shunting
- Compare the Compartmental Model to the previously validated Minimal Model [1] in terms of reproducibility

Methods

- > A Compartmental Model was evaluated using results from a study of HepQuant SHUNT test reproducibility [3].
 - N=16 controls, N=16 NASH, and N=16 HCV
 - 3 replicate SHUNT tests per subject on 3 separate days
- > Reliability of 6 hepatic disease indices compared between Compartmental Model and Minimal Model methods:

DSI, HR, HFR_S, HFR_P, SHUNT, and STAT

- Intra-class correlation coefficients (ICC):
 - Single measurement, 2-way mixed effects model for absolute agreement
 - P value: 1-sided test for lower acceptable limit (ICC>0.7)

Compartmental Model

- Transfer between compartments was modeled by a system of 18 differential equations
- Assumptions from measured and literature-derived values
- Parameters estimated by nonlinear least-squares regression, for each subject, for oral and IV data simultaneously

 $D_{PO,0} = oral dose of d4-CA at 0 min.$

 $D_{IV0} = IV$ dose of 13C-CA at 0 min.

B = *blood draws at 5, 20, 45, 60, 90 min.*

q, $CI_{H} =$ flow rates and hepatic clearance

q_{PS} = anatomic shunting

Index	Minimal Model		
	ICC	95% CI	P value
DSI	0.94	(0.90–0.96)	<0.001
HR	0.97	(0.94–0.98)	<0.001
HFR _s	0.82	(0.73–0.89)	0.0080
HFR _P	0.84	(0.75–0.90)	0.0017
SHUNT	0.73	(0.60–0.83)	0.3095
STAT	0.90	(0.84–0.94)	<0.001
	0.90	(0.84-0.94)	< 0.001

DSI = Disease Severity Index | HR = Hepatic Reserve | HFR_S = Systemic Hepatic Filtration Rate HFR_{P} = Portal Hepatic Filtration Rate | SHUNT = Shunt Fraction | STAT = d4-CA concentration at 60 minutes

Gregory T. Everson: greg.everson@hepquant.com Steve M. Helmke: steve.helmke@hepquant.com Michael P. McRae: mpmcrae@customdxsolutions.com