TREATMENT WITH HMG-CoA REDUCTASE INHIBITORS (STATINS) IS ASSOCIATED WITH PRESERVATION OF HEPATIC FUNCTION IN ADVANCED CHRONIC LIVER DISEASE (CLD): RESULTS FROM THE SHUNT-V STUDY

> Robert S. Rahimi, MD, for the SHUNT-V Subjects, Investigators, and Coordinators

AASLD Nov. 12-15, 2021 The Liver Meeting®

Disclosures

Robert Rahimi, MD

I have no financial relationship with a commercial interest

Steve M. Helmke, PhD: employee (CSO) HepQuant LLC; equity member HepQuant LLC; Intellectual property in HepQuant technology

Gregory T. Everson, MD: employee (CEO) HepQuant LLC; equity member HepQuant LLC; Intellectual property in HepQuant technology

The SHUNT-V Study was sponsored by HepQuant LLC

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Aim

The primary aim of this analysis, was to identify factors in patients with advanced chronic liver disease that are associated with severity of:

- Impairment of liver function
- Portal-systemic shunting

Specifically, we used the dual cholate test (HepQuant) to quantify liver function (Disease Severity Index, DSI) and shunting (SHUNT%) and define the impact of:

- Disease Etiology NASH versus Other
- Coexistent disease Diabetes versus No Diabetes
- Drug treatment Diabetic and Lipid-lowering drugs

3

Background

- Etiology, coexistent disease, and concomitant drug therapy can influence the progression of chronic liver disease (CLD).
- With disease progression portal hypertension and portal-systemic shunting increase and liver function declines – leading to clinical complications, such as varices.
- The noninvasive DUAL CHOLATE test quantifies portal-systemic shunting (SHUNT%) and generates a Disease Severity Index (DSI) of global liver function.
- In the SHUNT-V Study, shunting (SHUNT%) and liver function (DSI) were characterized in subjects with suspected, compensated, or clinically-stable cirrhosis.
- SHUNT-V and other studies found that SHUNT% and DSI predicted likelihood for portal hypertension*, esophageal varices**, and risk for clinical outcome***.

(*Clin Gastroenterol Hepatol 2021, doi: 10.1016/j.cgh.2021.04.030; **SHUNT-V and HALT-C data, Abstract #2126, AASLD 2021; ***Aliment Pharmacol Ther 2021; 53:928–938)

The SHUNT-V Study Enrollment Criteria

- 27 US clinical centers from Feb 2019 through Dec 2020
- Adults undergoing screening or surveillance EGD for varices
- Included suspected or definite cirrhosis as determined by:
 - Prior liver biopsy
 - Radiologic (including elastography) or clinical criteria
 - Chronically abnormal liver tests with low platelet count
- Exclusions included:
 - Child-Pugh C cirrhosis
 - Refractory ascites or encephalopathy
 - Prior variceal hemorrhage, known large varices, or treatment of varices

5

Dual Cholate Test Administration

6

Example of Dual Cholate Clearances in a Subject with Liver Disease

7

Results: NASH versus NON-NASH Subjects

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Demographics by NASH Diagnosis

		Wt (kg)	Ht (cm)	BMI (kg m ⁻²)	Obese (BMI >30)	Diabetes Mellitus	Age (yr)	Men	Hispanic	White	Black
	N	123	123	123	96	82	123	51	13	122	1
NASH	Mean (or %)	98.5	167.1	35.1	78.0%	66.7%	62.9	41.5%	10.6%	99.2%	0.8%
	SD	20.8	9.6	6.3			10.0				
	N	147	147	147	79	33	147	83	25	131	13
Non-NASH	Mean (or %)	93.1	170.2	32.0	53.7%	22.4%	60.3	56.5%	17.0%	89.1%	8.8%
	SD	25.2	10.6	7.6			10.7				
	р	0.06	0.0130	0.0003	<0.0001	<0.0001	0.0466	0.0150	0.16	0.0006	0.0040

NASH subjects were older, more likely to be obese, and 66.7% had diabetes – characteristics that would typically favor disease progression – and worse liver function.

9

Clinical Scores and Lab Tests by NASH Diagnosis

		CTP Score	MELD Score	MELD Na Score	Creatinine (mg/dL)	Bilirubin (mg/dL)	INR	Sodium (meq/L)
	N	118	116	113	117	118	116	114
NASH	Mean	5.33	8.51	8.55	0.91	0.82	1.15	140
	SD	0.73	3.02	4.08	0.27	0.60	0.30	3
	Ν	137	134	129	134	135	135	130
Non-NASH	Mean	5.49	8.60	8.77	0.87	1.02	1.22	140
	SD	0.95	2.91	3.85	0.32	0.95	0.91	3
t-test	р	0.14	0.81	0.67	0.27	0.06	0.43	0.59

NASH and NON-NASH subjects had similar clinical scores and standard laboratory tests.

10

Results of the Dual Cholate Test by NASH Diagnosis

		Systemic HFR	Portal HFR	SHUNT	DSI
		mL min ⁻¹ kg ⁻¹	mL min⁻¹ kg⁻¹	%	Score
	Ν	123	123	123.00	123
NASH	Mean	3.29	10.90	39.0%	23.4
	SD	0.98	6.49	18.2%	7.5
	Ν	147	147	147	147
Non-NASH	Mean	3.16	9.38	44.1%	25.5
	SD	1.10	6.76	18.8%	8.5
t-test	р	0.31	0.06	0.0256	0.0375

UNEXPECTED FINDING: Thus, it was surprising that NASH subjects had better liver function (lower DSI) and less portal-systemic shunting (lower SHUNT%).

11

Results: Diabetic versus NON-Diabetic Subjects

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Demographics by Diabetes Diagnosis

		Wt (kg)	Ht (cm)	BMI (kg m ⁻ ²)	Obese (BMI >30)	NASH	Age (yr)	Men	Hispanic	White	Black
	Ν	115	115	115	82	82	115	54	17	109	5
Diabetic	Mean (or %)	98.3	168.3	34.6	71.3%	71.3%	63.9	47.0%	14.8%	94.8%	4.3%
	SD	20.6	9.1	6.3			8.1				
Non	Ν	155	155	155	93	41	155	80	21	144	9
Diabetic	Mean (or %)	93.5	169.2	32.5	60.0%	26.5%	59.7	51.6%	13.5%	92.9%	5.8%
	SD	25.1	11.1	7.7			11.6				
	р	0.09	0.44	0.0187	0.07	<0.0001	0.0012	0.46	0.86	0.62	0.78

Diabetic subjects had higher BMI and were older; 71.3% had NASH.

13

Clinical Scores and Lab Tests by Diabetes Diagnosis

		CTP Score	MELD Score	MELD Na Score	Creatinine (mg/dL)	Bilirubin (mg/dL)	INR	Sodium (meq/L)
	Ν	113	111	107	111	112	111	108
Diabetic	Mean	5.27	8.25	8.60	0.91	0.79	1.14	140
	SD	0.65	3.04	3.97	0.27	0.68	0.35	3
	Ν	142	139	135	140	141	140	136
Non-Diabetic	Mean	5.54	8.80	8.73	0.87	1.03	1.23	140
	SD	0.97	2.88	3.96	0.32	0.89	0.88	3
t-test	р	0.0121	0.15	0.80	0.30	0.0196	0.30	0.17

Preserved function in diabetic subjects is suggested by the slightly lower CP score and mean bilirubin.

14

Results of the Dual Cholate Test by Diabetes Diagnosis

		Svotomia UED	Dortal UED	CHUNT		
		Systemic HFR		SHUNI	051	UNEXPECTED
		mL min-1 kg-1	mL min-1 kg-1	%	Score	FINDING: Since
						diabetes is a risk
	Ν	115	115	115	115	factor for progression
DM	Mean	3.38	11.74	37.5%	22.63	of liver disease, it
	SD	0.99	7.44	18.1%	7.46	was surprising that
						liver function was
	Ν	155	155	155	155	better (lower DSI)
No-DM	Mean	3.10	8.83	44.9%	26.0	and Portal-Systemic
	SD	1.08	5.75	18.5%	8.3	Shunting Less (lower
						SHUNT%) in
	р	0.0325	0.0004	0.0013	0.0008	DIABETIC Subjects.

Results: Drug Treatment

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Effect of Diabetic and Lipid-lowering Drugs

DSI Score 40 9 < 0.0001* 30 26.9 26.9 24.8 24.7 24.7 21.1 10 Neither Rx Diabetic Rx Lipid Rx Both Rx

Diabetic and Lipid-lowering drug use is associated with less portal-systemic shunting (lower SHUNT%) and better liver function (lower DSI). *p value for change from treatment with neither to both classes of drug.

In Multivariable Analysis the Use of STATINs or METFORMIN were Independently Associated with Lower SHUNT% and Lower DSI

	Impact on SHU	NT%	Impact on DSI			
	Decline in SHUNT%	р	Decline in DSI	р		
Statin	-6.3%	0.0132	-3.3269	0.0025		
Metformin	-5.9%	0.0475	-2.4337	0.0574		
Diabetes Diagnosis	-1.4%	0.64	-0.7239	0.5736		
NASH Diagnosis	-1.3%	0.61	-0.2246	0.8343		

The combined effect of the use of STATINs plus METFORMIN was 20% less portal-systemic shunting (lower SHUNT%) and 20% better function (lower DSI).

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Summary

- This study highlights the potential utility of the sensitive and reliable dual cholate test of liver function for detecting treatment effects.
- STATINS and Metformin were independently associated with preserved hepatic function and reduced portal-systemic shunting.
- Improved liver function and reduced portal-systemic shunting should reduce risk for clinical outcome.
 - ➢ Follow-up of the SHUNT-V cohort is planned.

Key Takeaways

- STATIN and Metformin use may slow the progression of chronic liver disease.
- These results provide support for a clinical trial of STATIN and Metformin in the treatment of chronic liver disease.
- The dual cholate test may detect the effects of treatments on liver function and physiology, and potentially provide new endpoints for clinical trials.

SHUNT-V Investigators and Clinical Centers

Institution

Accel Research Sites Arizona Liver Health **Baylor Scott and White** Bon Secours Liver Institute of Richmond California Liver Research Institute Clinical Trials of Texas, Inc. **Digestive Disease Associates** Gastroenterology Associates of Pensacola, PA Gastroenterology Consultants of Southwest Virginia Gastroenterology Health Partners, PLLC Inland Empire Liver Foundation Intermountain Medical Center Lucas Research Mayo Clinic Florida Mayo Clinic Rochester McGuire VA Methodist Dallas Medical Center Nature Coast Clinical Research Peak Gastroenterology Associates PMG Research Ralph H Johnson VAMC Southern California Research Center St. Louis University Tandem Clinical Research Univeristy of Mississippi University of Pennsylvania

University of Washington

Investigator Name

John M Hill, MD Anita Kohli, MD Robert Rahimi, MD Mitchell Shiffman, MD Edward Mena, MD Douglas Denham, DO Natarajan Ravendhran, MD Frederic Newman, MD Vishal Bhagat, MD James Strobel, MD Zeid Kayali, MD Richard Gilroy, MD Kathryn Lucas, MD Andrew Keaveny, MD Michael Leise, MD Michael Fuchs, MD Parvez Mantry, MD Paul Hellstern, MD Bhaktasharan Patel, MD Brian Smith, MD Wing-Kin Syn, MBChB Tarek Hassanein, MD Kamran Qureshi, MD Gary Reiss, MD Sarah Glover, DO Rajender Reddy, MD Ethan Weinberg, MD Kiran Bambha, MD

Investigator Title

Chair, Integrated Site Network Director of Research and Managing Partner Transplant Hepatologist and Gastroenterologist Director, Liver Institute of Virginia, Bon Secours Virginia Health System Medical Director & CEO Medical Director Medical Director, Clinical Research Department Gastroenterologist Director of Clinical Research Gastroenterologist Medical Director Medical Director of Hepatology and Liver Transplantation Endocrinologist & President Medical Director, Clinical and Transplant Hepatology Associate Professor of Medicine Professor of Medicine Medical Director, Liver Institute Research Clinical Research Investigator Gastroenterology President & Founder Clinical Investigator Professor of Medicine & Associate Research Program Director Director Associate Professor **Clinical Investigator Division Chief for Digestive Disease** Director, Hepatology & Medical Director, Liver Transplantation Assistant Professor in Clinical Medicine AASLD Associate Professor of Medicine The Liver

Meeting[®]

Thank you!

